Completeness of Coherent States Associated with Self-Similar Potentials and Ramanujan’s Integral Extension of the Beta Function
نویسندگان
چکیده
A decomposition of identity is given as a complex integral over the coherent states associated with a class of shape-invariant self-similar potentials. There is a remarkable connection between these coherent states and Ramanujan’s integral extension of the beta function. Electronic address: [email protected] Electronic address: [email protected] Electronic address: [email protected] 1
منابع مشابه
Shape-invariance and Exactly Solvable Problems in Quantum Mechanics
Algebraic approach to the integrability condition called shape invariance is briefly reviewed. Various applications of shape-invariance available in the literature are listed. A class of shape-invariant bound-state problems which represent two-level systems are examined. These generalize the Jaynes-Cummings Hamiltonian. Coherent states associated with shape-invariant systems are discussed. For ...
متن کاملروش انتگرال مسیر برای مدل هابارد تک نواره
We review various ways to express the partition function of the single-band Hubard model as a path integral. The emphasis is made on the derivation of the action in the integrand of the path integral and the results obtained from this approach are discussed only briefly. Since the single-band Hubbard model is a pure fermionic model on the lattice and its Hamiltonian is a polynomial in creat...
متن کاملبرهمنهی حالتهای همدوس غیرخطی روی سطح کره
In this paper, by using the nonlinear coherent states on a sphere, we introduce superposition of the aforementioned coherent states. Then, we consider quantum optical properties of these new superposed states and compare these properties with the corresponding properties of the nonlinear coherent states on the sphere. Specifically, we investigate their characteristics function, photon-number d...
متن کاملشبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست
In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کامل